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Thermal Transport Properties of Layered Materials:
Identification by a New Numerical Algorithm for
Transient Measurements1

Regine Model2

Transient methods are widely used to determine thermal transport proper-
ties. In some situations they can be used for homogeneous media to mea-
sure several properties either simultaneously or separately. In this context an
analytic model is available and a well-posed inverse problem of parameter
identification has to be solved. The examination of composite media is more
complicated. The algorithm proposed here allows simultaneous determination
of the thermal conductivity and thermal diffusivity of layered dielectrics by
transient measurements. It is based on a plane source that acts both as a
resistive heater and temperature sensor. For the technique to be successful
two essential aspects have to be considered: firstly, the mathematical mod-
eling of the measured data (the forward problem) and secondly, the prob-
lem of ill-posedness of the inverse problem. For the proposed measurement
configuration, a new fast data analysis algorithm based on an analytic solu-
tion for the forward problem is presented. In principle, a numerical solu-
tion such as an FEM solution of the heat conduction equation can be used
instead of the analytical one, but the computational effort is much greater.
The inverse problem is formulated as an output-least-squares problem, which
leads to a transcendent algebraic system of equations. The method was suc-
cessfully tested for different situations.
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1. INTRODUCTION

Information on thermal transport properties has increasingly gained in
importance in the fields of engineering which try to reduce the energy
involved, e.g., in process engineering and in the building industry. In the
case of homogeneous media, besides classical steady-state methods, alter-
native transient techniques are now becoming widely used worldwide for
all types of material [1–5]. The thermal conductivity λ and the thermal
diffusivity a are derived quantities and, thus, cannot be measured directly.
They rather have to be determined from related quantities, e.g., a temper-
ature profile. In general, a heat flow of known rate, �, is passed through
the material under test and the associated temperature profile T (x, t) is
measured depending on the thermal properties. In several situations, these
methods can be used to measure several properties either simultaneously
or separately. In this context a well-posed inverse problem of parameter
identification has to be solved.

The examination of composite media has only recently been consid-
ered with only a few results; [6–13]. Analytic approximations of the solu-
tion of the forward problem, which means simulation of the measuring
signal, are available for homogeneous media, which in general lose their
validity for layered composites. An alternative involves the application of
numerical methods as finite-element and finite-difference methods but at
the expense of considerable computational effort [7–10]. In some cases the
experimental setup allows one-dimensional modeling of heat conduction in
composite materials for which analytic solutions are derivable via Laplace
transformation, e.g., Refs. 6, 11, 13, or a neural network method is
used [12].

For the measurement configuration proposed here, a new fast data
analysis is derived on the basis of an analytic solution of the heat
conduction equation with piecewise-constant thermal transport properties
corresponding to the separate layers. Here the Green’s functions for the
time-dependent case are used. The method allows the thermal conduc-
tivity and thermal diffusivity of layered dielectrics to be simultaneously
determined by transient measurements. A plane heat source consisting
of thin metal foil acts both as a resistive heater and as a temperature
sensor.

In the first part of Section 2, the mathematical model for the tran-
sient temperature distribution applied to the proposed method is given. An
analytic expression describing the measuring signal based on the Green’s
function formulation is derived in the second part. The section ends with
the output-least-squares algorithm for the inverse problem, which leads to
a transcendent algebraic system of equations.
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In Section 3, the theoretical ideas of Section 2 are successfully applied
to a layered sample where the algorithm is split into two steps. In the first
step, the properties of the inner core and in the second step, those of the
outer layer are identified. A summary is given in Section 4.

2. THEORY

2.1. Mathematical Model

The data analysis of the implicit measuring method consists of two
parts: the first part is the so-called forward problem for which a mathe-
matical model is derived relating the measured data to the thermal prop-
erties; this means that for known thermal properties of the sample and
a known experimental setup, the corresponding measuring signal can be
simulated. The second part is the inverse problem; for a given measuring
signal and a known experimental setup, the thermal transport properties
have to be identified.

The principle of the proposed method is shown in Fig. 1. A current-
carrying metallic foil is clamped between two layered sample halves and
simultaneously acts as a temperature sensor. This method works similar to
the hot-strip technique; both methods are based on a step-wise heat source
which is combined with the temperature sensor. The difference consists in
the heat source geometry, on the one hand a plane source and on the
other a hot strip. In another conceivable version, the temperature response

heat source

inner layer
outer layer

Fig. 1. Schematic diagram of the specimen for the proposed method.
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could be measured by a separate sensor placed a distance h from the heat
source but within the inner layer. It describes a step-wise transient tech-
nique based on a separated heat source and temperature sensor.

The choice of a plane source geometry provides the possibility of
modeling the heat transfer process as a one-dimensional problem. Even
for the case of multi-layered composites, an analytic solution of the cor-
responding partial differential equation for heat transfer can be derived
as a solution of the forward problem. The length and width of the foil
have to be sufficiently large for the heat losses at the surface to be neg-
ligible. Another way of allowing one-dimensional modeling of the temper-
ature response may be realized by total insulation at the surface, i.e., the
assumption of a homogeneous boundary condition of the second kind.

The one-dimensional formulation of the transient heat conduction
problem for an m-layered slab is given as follows. The interfaces between
the layers are located at x =xi , i =1,2, . . . ,m−1 and the outer boundary
surfaces at x0 and xm. Let λi be the constant thermal conductivity and ai

the constant thermal diffusivity of the i-th layer, xi−1 <x �xi , i =1, . . . ,m.
We get the differential equation,

∂T (x, t)

∂t
=div(a grad T (x, t))+ a

λ
q(x, t) in x0 �x �xm, t >0. (1)

The heat source q is restricted to the thin foil and the thermal diffusivity
a and the thermal conductivity λ depend on the diffusivities and conduc-
tivities of the single layers;

a(x)=ai, λ(x)=λi, xi−1 <x �xi.

The initial temperature at t =0,

T (x,0)=T0(x), x0 �x �xm (2)

can be different for each layer and also vary within a layer. At the outer
boundaries we write the general form,

−λ1
∂T (x0, t)

∂x
= h0(T1(t)−T (x0, t)), t >0 (3a)

λm

∂T (xm, t)

∂x
= hm(Tm(t)−T (xm, t)), t >0, (3b)

where T1(t) and Tm(t) represent the—possibly time-dependent—ambient
temperature of the first and the m-th (last) layer, respectively. Additional
boundary conditions at the layer interfaces have to be satisfied,

λiTx(xi −0, t)=λi+1Tx(xi +0, t) (3c)
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ensuring the continuity of heat flux at the interfaces. In the case of perfect
thermal contact between the layers, we have the continuity of temperature,

T (xi −0, t)=T (xi +0, t), i =1,2, . . . ,m−1, (3d)

and for the case where there is thermal contact conductance at the inter-
faces,

−λiTx(xi, t)=hi(T (xi −0, t)−T (xi +0, t)), i =1,2, . . . ,m−1, (3d)∗

with the interface thermal contact conductance hi at the i-th interface.
Let us adapt the general mathematical model to our special experi-

mental situation. Due to the symmetrical setup of a centered inner source,
the integration domain of Eq. (1) can be reduced to one half. Further-
more, concentrating on a sample simply consisting of two materials with
perfect thermal contact, we get the following conditions for our special-
ized problem with m=2 and x0 =0 corresponding to Eqs. (3a–3d)

−λ1
∂T (0, t)

∂x
=0, t >0, (4a)

because of symmetry the heat flux vanishes,

λ2
∂T (x2, t)

∂x
=h2(T2(t)−T (x2, t)), t >0, (4b)

the outer boundary condition and the conditions at the interface,

λ1Tx(x1 −0, t)=λ2Tx(x1 +0, t), (4c)

T (x1 −0, t)=T (x1 +0, t). (4d)

If d is one half the thickness of the foil, we get the following form for the
heat source q:

q(x, t)=q(x)=
{

q0, x �d �x1
0, otherwise (5)

In reality, the materials and thus the thermal properties of the thin
foil (10–20 µm) and the inner layer are highly different. Considering the
foil as a separate layer or neglecting the separate layer leads to a small
difference in the calculated temperature distribution. Nevertheless, this
difference is covered by the measurement uncertainty as shown in Ref. 14



170 Model

by finite-element simulations. For simplicity, the different material prop-
erties of the foil are neglected in the following. Then, the mathematical
formulation is given by the heat conduction equation,

∂T (x, t)

∂t
= ∂

∂x

(
a
∂T (x, t)

∂x

)
+ a

λ
q(x) in 0�x �x2, t >0 (6)

with the initial condition (Eq. (2)), the boundary conditions (Eqs. (4a, b)),
the interface conditions (Eqs. 4c, d), and the heat source q(x) given in
Eq. (5).

2.2. Analytic Solution of the Forward Problem

To solve the nonhomogeneous heat transfer problem (Eq. (6)) in a
layered composite medium, we start with a homogeneous problem with no
heat generation,

∂T (x, t)

∂t
= ∂

∂x

(
a
∂T (x, t)

∂x

)
and T (x,0)=T0(x) for 0�x �x2, t >0

(7)

to obtain the Green’s function. When this function is available, the tem-
perature distribution of Eq. (6) can be represented only in terms of the
Green’s function.

Assume a separation of variables in space- and time-dependent func-
tions in the form,

T (x, t)=u(x)�(t). (8)

The time-variable function �(t) is the solution of

d�(t)

dt
+β2

n�(t)=0 for t >0

given by

�n(t)= e−β2
nt . (9)

The β2
n are choosen nonnegative to ensure the finiteness of tempera-

ture for t →∞. For homogenous boundary conditions of the second kind
at the sample surface, zero is also an eigenvalue. Otherwise all eigenvalues
are positive. The corresponding eigenvalue problem is given by

d2ui

dx2
+ β2

n

ai

ui =0, (10)
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with the dimensionsless split eigenfunctions,

un(x)=
{

u1n(x), for 0�x �x1
u2n(x), for x1 <x �x2

where the index n indicates the dependence on the eigenvalue βn. The
solution is subject to the boundary conditions,

−λ1
du1n(x)

dx
=0 at x =0 (11a)

u1n(x)=u2n(x) at x =x1 (11b)

λ1
du1n

dx
=λ2

du2n

dx
at x =x1 (11c)

λ2
du2n

dx
=0 at x =x2 (11d)

where, for simplicity, we assume adiabatic conditions at the sample sur-
face, that means that the surface conductance vanishes, h1 = h2 = 0. For
nonvanishing surface conductance, the derivation of the analytic solution
can be analogously performed. The general solution uin of the eigenvalue
problem (Eq. (10)) for a slab geometry can be written in the form,

u1n(x) = A1n sin
(

βn√
a1

x

)
+B1n cos

(
βn√
a1

x

)
for 0�x �x1 (12a)

u2n(x) = A2n sin
(

βn√
a2

x

)
+B2n cos

(
βn√
a2

x

)
for x1 <x �x2. (12b)

The first boundary condition (Eq. (11a)) requires that A1n =0. With-
out loss of generality, one of the nonvanishing coefficients can be set to
unity since one coefficient is arbitrary. We have chosen B1n =1. Moreover,
the solution (Eq. (12)) has to fulfill the remaining conditions (Eqs. (11b)
to (11d)) yielding the following equation in matrix form for the determi-
nation of the coefficients A2n and B2n:



cos
(

x1βn√
a1

)
− sin

(
x1βn√

a2

)
− cos

(
x1βn√

a2

)

−λ1
λ2

√
a2
a1

sin
(

x1βn√
a1

)
− cos

(
x1βn√

a2

)
sin
(

x1βn√
a2

)

0 cos
(

x2βn√
a2

)
− sin

(
x2βn√

a2

)




 1

A2n

B2n


=


0

0
0


 .

(13)

The matrix of coefficients in Eq. (13) depends on the eigenvalues βn of the
problem (Eq. (10)), unkown so far. Nevertheless, they are determined by
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the requirement of the vanishing determinant, the condition for the exis-
tence of a solution of Eq. (13). After having determined the βn, in general
by numerical methods, we obtain for A2n and B2n,

A2n = cos
(

x1βn√
a1

)
sin
(

x1βn√
a2

)
− λ1

λ2

√
a2

a1
sin
(

x1βn√
a1

)
cos

(
x1βn√

a2

)
, (14a)

B2n = λ1

λ2

√
a2

a1
sin
(

x1βn√
a1

)
sin
(

x1βn√
a2

)
+ cos

(
x1βn√

a1

)
cos

(
x1βn√

a2

)
. (14b)

Now, with Eq. (14) and the knowledge of the eigenvalues βn, the
eigenfunctions uin defined in Eq. (12) are known and the general solution
of Eq. (7) becomes

T i(x, t)=
2∑

j=1

xj∫
xj−1

[ ∞∑
n=1

1
Nn

λj

aj

e−β2
ntuin(x)ujn(x

′)

]
T0(x

′)dx′, i =1,2 (15)

where

T (x, t)=
{

T1(x, t), for 0�x �x1
T2(x, t), for x1 <x �x2

and the norm Nn is given by

Nn = λ1

a1

x1∫
0

u2
1n(x)dx + λ2

a2

x2∫
x1

u2
2n(x)dx (16)

The expression in brackets in Eq. (15) is the Green’s function for the
homogeneous problem. By replacing t by (t − τ), we obtain the Green’s
function Gij for the composite medium for the nonhomogeneous case,

Gij (x, t |x′, τ ) =
∞∑

n=1

e−β2
n(t−τ) 1

Nn

λj

aj

uin(x)ujn(x
′)

xi−1 <x �xi, i =1,2, xj−1 <x′ �xj , j =1,2. (17)

It represents the response at location x and at time t to an impulse
located at x′ at time τ . There are an infinite number of discrete eigenvalues
βn and the corresponding eigenfunctions uin. The eigenvalues are ordered
by magnitude β1 <β2 < · · ·<βn < · · · . For more details, see Refs. 15 to 17.
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Finally, the complete temperature distribution in the sample can be calcu-
lated by the resulting formula, where T1(x, t) stands for the temperature in
the inner layer and T2(x, t) for that in the outer layer;

Ti(x, t) =
2∑

j=1




xj∫
xj−1

Gij (x, t |x′, τ )
∣∣
τ=0 T0(x

′)dx′

+
t∫

0

xj∫
xj−1

Gij (x, t, |x′, τ )
aj

λj

q(x,′ τ)dx′dτ


 (18)

for xi−1 <x �xi, i =1,2

We assume that the initial temperature in the sample at t = 0 is con-
stant, T0(x) = T0, as can be expected for the experimental configuration.
Then, using the substitution,

�Ti(x, t)=Ti(x, t)−T0 (19)

for the temperature rise �Ti , the derivation of the solution is very simi-
lar, but in the resulting expression, the first integral of Eq. (18) vanishes.
Remember that the constant heat source (Eq. (5)) is limited to a thin
heater, in the one-dimensional model to a short interval, and the solution
becomes

�Ti(x, t)=q0
a1

λ1

t∫
0

d∫
0

Gi1(x, t |x′, τ )dx′dτ for xi−1 <x �xi, i =1,2. (20)

The transient signal, measured, i.e., the temperature rise in the source
plane, is calculated from Eq. (20) and the derived Green’s function (Eq.
(17)) at x =0 to be

�T1(0, t)=q0

∞∑
n=1

√
a1

β3
nNn

[
1− e−β2

nt
]

sin
(

βn√
a1

d

)
. (21)

Adding the initial temperature T0 at t = 0 corresponding to Eq. (19),
we get the temperature signal T1(0, t), the solution of the forward prob-
lem. The summands of the infinite series in Eq. (21) fast converge to zero
for growing eigenvalues.
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2.3. Inverse Problem

The objective is to find the thermal conductivity and thermal diffusiv-
ity values of the two-layered composite under test that are consistent with
the experimental measuring signal. The underlying mathematical model
relating the experimental setup and the thermal properties of the sample
with the measuring signal is generally given by Eqs. (4) to (6). The explicit
form, Eq. (21), has been derived in the last section. This analytic solu-
tion has the advantage of requiring very little computing time compared
with numerical solution methods such as finite-element or finite-difference
methods. On the other hand, the experimental configurations for which
analytic expressions can be derived, simulating the measuring signal in
multi-layered samples are limited to special cases.

Let the vector T sim(λ1, a1, λ2, a2, t) be the simulated measuring signal
depending on the thermal properties and discrete times t = (t1, . . . , ts), and
T mes(t) the vector of the measuring signal. The related inverse problem of
parameter identification is formulated as an output-least-squares problem,

∥∥∥T sim(λ1, a1, λ2, a2, t)−T mes(t)

∥∥∥2

2
=min!

based on the repeated solving of the forward problem, in conjunction with
a minimization strategy. The subscript indicates the l2-norm. It is solved
by the Levenberg–Marquardt method [18] as published by the program
library of the International Mathematical Subroutine Library (IMSL). The
algorithm combines the Gauss–Newton method with the gradient method
which is well suited for handling ill-conditioned problems. This procedure
was also successfully applied to homogeneous and multilayered problems,
solving the forward problem by a finite-element method [8,9]. For lay-
ered composites, the subsequent determination of the parameters, begin-
ning with the inner layer, strongly improves the condition of the prob-
lem. In a first step, a particular initial interval of the signal is used for
the parameter identification of the inner layer and, in a following step, an
adequately longer interval is used for the second layer.

3. NUMERICAL EXPERIMENTS

Now, we test the proposed technique by reconstructing thermal trans-
port properties of a layered sample obtained from simulated data. The
geometrical dimensions and the thermal properties of the sample are cho-
sen as follows:

The thickness of the heater 2d = 20µm, the thickness of the inner
layer d1 = 20 mm, the thickness of the outer layer d2 = 20 mm, thermal
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properties of the inner layer λ1 = 1.5 W· m−1· K−1 and a1 = 1.0 mm2· s −1

and of the outer layer λ2 = 0.5 W · m −1· K−1 and a2 = 0.5 mm2· s −1. In
comparison to pulse heating the sample size is larger.

First, the matrix of coefficients is calculated as given in Eq. (13).
From the requirement that the determinant of the coefficients must van-
ish, we determine the eigenvalues of the corresponding eigenvalue prob-
lem (Eq. (10)). Fig. 2 shows the determinant as a function of β where the
zeros are the wanted eigenvalues. A precise calculation was achieved using
a subroutine of the IMSL library for the determination of zeros of tran-
scendental functions and furnishes an arbitrary number of eigenvalues βn.
The current number r needed depends on the convergence properties of
the series in Eq. (21). In our example, all summands for βi �1.5 s−1/2 are
negligibly small. Equation (10) has r =21 eigenvalues satisfying the condi-
tion βi <1.5 s −1/2, as listed in Table I.

The corresponding measuring signal calculated by Eq. (21) as well as
the signal for a homogenous sample (λ1 and a1), are shown in Fig. 3.
In the first interval [0, tz], only the thermal properties of the inner core
govern the temperature rise. Therefore, the curves of the two-layered and
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0.0

-0.5

-1.0

0.0 0.5 1.0 1.5 2.0 β,s-1/2
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te

rm
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Fig. 2. Determinant of the coefficients given in Eq. (13) versus β.

Table I. Eigenvalues of Eq. (10) Smaller than 1.5 [in units of s−1/2]

0.0692 0.5640 1.0562
0.1424 0.6322 1.1279
0.2103 0.7055 1.1955
0.2813 0.7743 1.2683
0.3535 0.8440 1.3384
0.4210 0.9170 1.4069
0.4935 0.9847 1.4802
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Fig. 3. Calculated temperature rise for a layered sample and a
corresponding homogeneous sample (a1, λ1).

the homogeneous sample coincide. For t > tz the temperature rise is deter-
mined by the thermal conductivity and thermal diffusivity of both the
inner core and the outer layer, as well as at later times by also the sur-
roundings.

As expected from earlier investigations [9] using the finite-element
method for the forward problem of the hot-strip technique, the inverse
problem of the simultaneous identification of the four properties λ1, a1, λ2,
and a2 is highly ill-posed. To improve the condition of the problem, the
thermal properties have to be determined one after another, starting with
the inner layer. As a first step, the initial interval [0, tz] of the signal is
selected to identify the thermal properties of the inner layer. In a subse-
quent step, the determination of the properties of the outer layer is carried
out within the remaining interval (t > tz) while keeping the results of the
first step fixed. As shown in Ref. 9, the total measurement period has to
be sufficiently long so that the signal contains information about the sam-
ple surface. Otherwise, the thermal properties cannot be uniquely deter-
mined and the iteration may lead to a local minimum. For the analytic
solution (Eq. (21)) adiabatic boundary conditions are assumed. However,
other conditions can be analogously included, assuming that in case of
boundary conditions of the third kind, the surface conductance is known.
The same is valid for imperfect contact at the interface.

The measurement uncertainty for the inner layer is the same as
for a homogenous material, but in comparison to transient hot-strip
(THS) techniques [19], a portion of the model error is strongly decreased.
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Numerical experiments showed that the accuracy for thermal properties of
the outer layer is a little smaller, especially for the thermal diffusivity.

Theoretically, the method can be extended to more than two layers.
Nevertheless, a degradation of the condition of the inverse problem and
the existence of local minima can be expected, resulting in a larger uncer-
tainty of the results.

4. SUMMARY

Transient methods are widely used to determine the thermal proper-
ties of some materials, but almost always for homogeneous media. For the
situation of layered composites a new fast identification algorithm is pre-
sented which is based on an analytic solution of the forward problem and
a numerical least-squares solver. For the measuring configuration, a plane
source is favored because a one-dimensional treatment is possible in this
case. The method is designed for simultaneous determination of the four
properties, viz., thermal diffusivity and thermal conductivity of the two
layers.
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